

Martin Fiedler a.k.a.
KeyJ^TRBL

All The Small Things:
Tricks and Techniques used in Intros

Deadline 2017
September 30, 2017

ORWOhaus, Berlin, Germany

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 2 / 32

Intro(duction)

writes
“Hello, World!”

8704 bytes

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 3 / 32

flyby over a
beautiful

landscape

3½ minutes
of music

4066 bytes

Intro(duction)

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 4 / 32

Agenda
● general techniques ← general audience

– procedural generation
– demo-in-a-shader
– saving code size
– compression

● technical tricks ← coder-oriented
– EXE header tricks
– import by hash

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 5 / 32

Scope
● what to expect:

– summary of some “state of the art” techniques used in intros

● what not to expect:
– no original research
– no revolutionary new method
– no “how to make an intro” tutorial

● focused on the Windows platform
– most concepts apply to other platforms, too

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 6 / 32

What does a demo consist of?
● Code (code for the CPU)
● Shaders (code for the GPU)
● Geometry (“meshes” etc. – 3D object shapes)
● Textures (or image data in general)
● Music
● Other Data (e.g. animation control data)

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 7 / 32

A survey of demo sizes
Code Shaders Geometry Textures Music Other

Lifeforce
ASD 4.31 MiB 0.21 MiB 5.15 MiB 16.40 MiB 9.60 MiB —

Stargazer
Orb & Andromeda 1.46 MiB 0.66 MiB 22.85 MiB 37.29 MiB 4.22 MiB 1.11 MiB

1995
Kewlers & MFX 3.15 MiB 0.01 MiB ? 4.91 MiB 7.36 MiB —

Agenda Circling Forth
Fairlight & CNCD 6.78 MiB 0.01 MiB 169.90 MiB 23.94 MiB 9.19 MiB 1.68 MiB

Final Audition
Plastic 0.89 MiB ? 5.94 MiB 5.66 MiB 3.44 MiB 0.33 MiB

Average
(without highest and lowest)

~ 3 MiB
(8%)

~ 0.1 MiB
(<1%)

~ 11 MiB
(31%)

~ 15 MiB
(42%)

~ 6 MiB
(17%)

~ 0.5 MiB
(1%)

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 8 / 32

Procedural Generation
● textures, geometry data and music

are typically the biggest parts of a demo
● idea: don’t store them – generate them at runtime!
● only record the steps required to reconstruct the data

– usually much smaller than the original data
● need to store the code that performs the steps as well

– larger than the parameter data, but much smaller than the generated data
– many parts can be re-used for multiple textures / meshes / synthesizers

● caveat: harder to use for the artists!
– no Photoshop, no 3DStudio/Blender, no dozens of VST plugins …

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 9 / 32

Procedural Textures

192 KiB uncompressed
~ 83 KiB PNG
~ 20 KiB JPEG

Example:
a simple brick texture
(256×256 pixels, RGB) TGimage *A, *B, *C;

B = tgCreate(256,256, TG_FORMAT_GRAY | TG_FORMAT_WRAP);
tgFill(B, 0xFF000000);
tgRect(B, 0,0, 240,112, 0xFFFFFFFF);
tgRect(B, 0,128, 112,112, 0xFFFFFFFF);
tgRect(B, 128,128, 128,112, 0xFFFFFFFF);
tgRotoZoom(B, 0.00, 4.00);
C = tgCreateCompatible(B);
tgPlasma(C, 8192, 0.70);
tgDisplace(B, C, 7,7, 0);
tgFree(C);
A = tgCopy(B);
tgColorMap(A, 0xFFC0C0C0, 0xFFB01810);
tgNoise(B, 20480);
tgBlurEx(B, 2, 0.00);
tgLight(A, B, 0.12, 0.78, 0.78, 0.00, 1.00, 0.50, 2.00);
tgFree(A);
tgFree(B);

a few texture generator calls
< 200 bytes

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 10 / 32

Procedural Textures

create
black
image

create
cloud
image

scale &
repeat displace add

noise blur

color
map lighting

draw
boxes

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 11 / 32

Procedural Geometry
Example Mesh
(from the werkkzeug 1 tutorial)

2402 vertices, 4800 triangles

uncompressed: ~ 84 KiB

7 operators + parameters,
< 200 bytes

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 12 / 32

Procedural Textures and Geometry
● What about text?

– no problem if you’re OK with a standard Windows font!
– GetGlyphOutline API produces small bitmaps or vector data

for single characters (“glyphs”)
● Code size of decent texture and geometry generators:

20-50 KiB uncompressed
– but shared for all textures / meshes used in the intro!

● In 4k intros: typically “specialized” generators
– code that generates exactly the desired texture / mesh; no control data
– or use default meshes provided by the graphics API or commonly

installed libraries (e.g. D3DXCreateBox, GLUquadric)

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 13 / 32

“Procedural Music” → Software Synthesizers
● for music, same approach can be used:

– don’t play a ready-made track in MP3, Ogg or similar format
– instead synthesize it in real-time
– mostly oscillators and filters, little or no samples

● common “professional grade” demoscene softsynths:
– 64k: V2, 64klang, WaveSabre, Tunefish
– 4k: 4klang, Oidos, Clinkster
– include a VSTi plugin for DAWs

● musician composes a track using only this single plugin
● notes and synth settings then exported into a compact format

● or a fully custom synth, entering notes as numbers in code :)

http://www.pouet.net/prod.php?which=15073
https://www.tunefish-synth.com/
http://4klang.untergrund.net/
http://www.pouet.net/prod.php?which=69524
http://www.pouet.net/prod.php?which=61592

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 14 / 32

Why are shaders so small?
● recap: shaders are freakin’ tiny!
● they are technically GPU code, but not machine code:

– need to work with different GPUs with totally different architectures
– either vendor-neutral bytecode (Direct3D, Vulkan)
– … or actual source code! (OpenGL, Direct3D with d3dcompiler*.dll)

● source code in particular is very compact
– lots of reasons …
– most importantly: it compresses very well!

● Makes sense to do as much with shaders as possible!
– Why not just render everything only with a shader?

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 15 / 32

Whole Demos in a Shader
● iq^rgba: “Rendering Worlds With Two Triangles” (2008)
● don’t use classic polygon rendering, but raytracing or variants

– commonly signed distance field ray-marching a.k.a. sphere tracing
– 2006-era GPUs became capable of doing that (Shader Model 3)

● a shader is run for each pixel of the screen independently
● geometry and textures are implicit

– everything’s in the shader code
– can use funky geometry like fractals

● used by almost all 4k intros since ~2009
● see shadertoy.com for lots of examples

http://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
https://www.shadertoy.com/

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 16 / 32

Example Shader
float bounce;
float sdBox(vec3 p,vec3 b) {
 vec3 d=abs(p)-b;
 return min(max(d.x,max(d.y,d.z)),0.)+length(max(d,0.));
}
void pR(inout vec2 p,float a) {

p=cos(a)*p+sin(a)*vec2(p.y,-p.x);
}
float noise(vec3 p) {

vec3 ip=floor(p);
 p-=ip;
 vec3 s=vec3(7,157,113);
 vec4 h=vec4(0.,s.yz,s.y+s.z)+dot(ip,s);
 p=p*p*(3.-2.*p);
 h=mix(fract(sin(h)*43758.5),fract(sin(h+s.x)*43758.5),p.x);
 h.xy=mix(h.xz,h.yw,p.y);
 return mix(h.x,h.y,p.z);
}
float map(vec3 p) {

p.z-=1.0;
 p*=0.9;
 pR(p.yz,bounce*1.+0.4*p.x);
 return sdBox(p+vec3(0,sin(1.6*time),0),vec3(20.0, 0.05, 1.2))-.4*noise(8.*p+3.*bounce);
}
vec3 calcNormal(vec3 pos) {
 float eps=0.0001;

float d=map(pos);
return normalize(vec3(map(pos+vec3(eps,0,0))-d,

 map(pos+vec3(0,eps,0))-d,map(pos+vec3(0,0,eps))-d));
}
float castRayx(vec3 ro,vec3 rd) {
 float function_sign=(map(ro)<0.)?-1.:1.;
 float precis=.0001;
 float h=precis*2.;
 float t=0.;

for(int i=0;i<120;i++) {
 if(abs(h)<precis||t>12.)break;

h=function_sign*map(ro+rd*t);
 t+=h;

}
 return t;
}
float refr(vec3 pos,vec3 lig,vec3 dir,vec3 nor,float angle,out float t2, out vec3 nor2) {
 float h=0.;
 t2=2.;

vec3 dir2=refract(dir,nor,angle);
 for(int i=0;i<50;i++) {

if(abs(h)>3.) break;
h=map(pos+dir2*t2);
t2-=h;

}
 nor2=calcNormal(pos+dir2*t2);
 return(.5*clamp(dot(-lig,nor2),0.,1.)+pow(max(dot(reflect(dir2,nor2),lig),0.),8.));
}
float softshadow(vec3 ro,vec3 rd) {
 float sh=1.;
 float t=.02;
 float h=.0;
 for(int i=0;i<22;i++) {
 if(t>20.)continue;
 h=map(ro+rd*t);
 sh=min(sh,4.*h/t);

 t+=h;
 }
 return sh;
}
void mainImage(out vec4 fragColor,in vec2 fragCoord) {
 bounce=abs(fract(0.05*time)-.5)*20.;

vec2 uv=gl_FragCoord.xy/res.xy;
 vec2 p=uv*2.-1.;
 float wobble=(fract(.1*(time-1.))>=0.9)?fract(-time)*0.1*sin(30.*time):0.;
 vec3 dir = normalize(vec3(2.*gl_FragCoord.xy -res.xy, res.y));
 vec3 org = vec3(0,2.*wobble,-3.);
 vec3 color = vec3(0.);
 vec3 color2 =vec3(0.);
 float t=castRayx(org,dir);

vec3 pos=org+dir*t;
vec3 nor=calcNormal(pos);

 vec3 lig=normalize(vec3(.2,6.,.5));
 float depth=clamp((1.-0.09*t),0.,1.);
 vec3 pos2 = vec3(0.);
 vec3 nor2 = vec3(0.);
 if(t<12.0) {
 color2 = vec3(max(dot(lig,nor),0.) +
 pow(max(dot(reflect(dir,nor),lig),0.),16.));
 color2 *=clamp(softshadow(pos,lig),0.,1.);
 float t2;

color2.rgb +=refr(pos,lig,dir,nor,0.9, t2, nor2)*depth;
 color2-=clamp(.1*t2,0.,1.);

}
 float tmp = 0.;
 float T = 1.;
 float intensity = 0.1*-sin(.209*time+1.)+0.05;

for(int i=0; i<128; i++) {
 float density = 0.;
 float nebula = noise(org+bounce);
 density=intensity-map(org+.5*nor2)*nebula;

if(density>0.) {
tmp = density / 128.;

 T *= 1. -tmp * 100.;
if(T <= 0.) break;

}
org += dir*0.078;

 }
vec3 basecol=vec3(1./1. , 1./4. , 1./16.);

 T=clamp(T,0.,1.5);
 color += basecol* exp(4.*(0.5-T) - 0.8);
 color2*=depth;
 color2+= (1.-depth)*noise(6.*dir+0.3*time)*.1;
 fragColor = vec4(vec3(1.*color+0.8*color2)*1.3,
 abs(0.67-depth)*2.+4.*wobble);
}

one scene from
“Rhodium” by Alcatraz

(1st @ Deadline 2016 PC 4k)

~ 3k uncompressed
(without comments, but with whitespace)

shadertoy.com/view/llK3Dy

https://www.shadertoy.com/view/llK3Dy

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 17 / 32

Smaller Code
● CPU code is surprisingly large!
● for typical demos, a large part of this is generic libraries

– e.g. music library that plays 20 formats with 4 different APIs
● for size-optimized code, leave out everything you can!

– be sloppy: don’t free memory, no sanity checks, no exceptions … YOLO!
● most importantly: don’t use the standard C/C++ library!

– 70k+ when linked statically, or a ~2 MiB DLL dependency
– you don’t need printf(), not even malloc(), and certainly not the STL
– use the plain Win32 API where possible (malloc → HeapAlloc)
– if a C library is absolutely required, use msvcrt.dll (see the Crinkler manual for details)

– or write in assembly language (common for 4k intros)

http://www.crinkler.net/

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 18 / 32

Compression
● using all the techniques described so far,

a typical 64k intro is still ~300k, a typical 4k intro like ~20k
● obvious solution: use an executable compressor

– compresses the existing code and generates and EXE
that decompresses everything on startup and runs it

● demoscene standard for 64k: kkrunchy
● demoscene standard for 4k: Crinkler
● different trade-offs: 4k can use extremely slow decompressor
● unfortunately, antivirus software flags everything compressed with these as

totally evil, but that’s another story …

http://www.farbrausch.de/~fg/kkrunchy/
http://www.crinkler.net/

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 19 / 32

Helping the Compressor
● ryg^Farbrausch: “Working With Compression” (2006)
● compression can be made more efficient when the uncompressed

data contains as many repeating patterns as possible
● pre-process the data to better suit the compressor

– quantization: store values with less precision where acceptable
– run-length encoding: encode repeated values as “N times X” code
– delta coding: only encode the difference to the previous value
– reordering: group similar data together

● music data, naive: sequence of events in <timestamp, channel, note> format
● optimized: separate delta-coded timestamp and note data for each channel

– put each type of data into its own section

http://www.farbrausch.de/~fg/seminars/workcompression.html

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 20 / 32

Shader Minification
● remove stuff from shaders which is ignored by the compiler anyway

– whitespace, comments, #ifdefs, { braces around single statements }, ...
– rename local variables and functions to single letters
– tedious to do by hand, but there’s Ctrl+Alt+Test’s Shader Minifier tool
for (CurStep = 1.0;
 ii >= 0.0 && t < 999.0 && CurStep > t * 0.000001;
 t += CurStep, RayStep = rayDir * t, --ii) {

CurStep = f(p+RayStep);
}
if (ii <= 1) {

ii = 0.0;
t = 999.3;
RayStep = rayDir * t;
break;

}
ii = smoothstep(44.0, 1.0, ii);
vec3 NextPos = p + RayStep;
p = NextPos; // Start point and direction for reflected ray
CurNormal = vec2(0.04, 0.0);
vec3 n = vec3(

fN(p + CurNormal.xyy) - fN(p CurNormal.xyy),–
fN(p + CurNormal.yxy) - fN(p CurNormal.yxy),–
fN(p + CurNormal.yyx) - fN(p - CurNormal.yyx));

for(t=1.;y>=0.&&t<999.&&t>t*1e-06;t+=t,v
=s*t,--y)t=f(e+v);if(y<=1){y=0.;t=999.3;
v=s*t;break;}y=smoothstep(44.,1.,y);vec3
m=e+v;e=m;i=vec2(.04,0.);vec3 x=vec3(f(e
+i.xyy)-f(e-i.xyy),f(e+i.yxy)-f(e-i.yxy)
,f(e+i.yyx)-f(e-i.yyx));

excerpt from the shader of
BluFlame’s 4k intro “Detached”

http://www.ctrl-alt-test.fr/?page_id=7

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 21 / 32

The Compressor’s Dirty Tricks
● kkrunchy and Crinkler don’t just compress the code,

they also perform quite a few tricks to make unusually small EXEs
● kkrunchy: reordering and pre-processing for x86 code,

some minor EXE header abuse, but mostly harmless™
– transforms relative jumps into absolute jumps → more repetition!

● Crinkler uses every conceivable trick to make executables
as small as possible
– not always safe: older Crinkler-packed EXEs don’t always run on newer

Windows versions
– lots of extra-unsafe options to activate when space is getting really tight

● … but what do they actually do?

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 22 / 32

EXE File Structure
● every Windows EXE is also a DOS EXE

– “DOS stub” prints message when run in DOS
– a field at the end of the DOS header points to …

● PE header = “real” Windows EXE header
– “Portable Executable”

● all actual code and data stored
in sections
– typically separate sections for code,

initialized data, read-only data, etc.
– but it’s OK to just put everything into

a single section

DOS Header (64 bytes)
‘MZ’

DOS Stub

PE Header (120 bytes)

‘PE’

Data Dictionaries
(typically 128 bytes)

.idata section (data)
.text section (code)
… other sections …

NumOfSections

e_lfanew

Section Table
(40 bytes per section)

SizeOfOptHdr

EntryPoint

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 23 / 32

The Section Alignment Problem
● all sections must be aligned

to at least 512 bytes
– i.e. must start on a 512-byte boundary

and be a multiple of 512 bytes in size
– alignment specified in a field in the header

(“FileAlignment”)
● even a simple EXE with only header

and a single section would need
padding after the header!

DOS Header (64 bytes)
‘MZ’

DOS Stub

PE Header (120 bytes)

‘PE’

Data Dictionaries
(typically 128 bytes)

FileAlignment

… padding …

single combined section

NumOfSections

e_lfanew

Section Table
(40 bytes per section)

SizeOfOptHdr

EntryPoint

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 24 / 32

Sectionless Executables
● solution: don’t use sections at all!

– set NumberOfSections = 0
– SizeOfOptHdr field (offset of section table)

can be set to anything
● … in theory. In practice, it should be set

to 8 to work around a bug(?) in Windows 7.
● also enables “low alignment mode”

– FileAlignment can be as low as 1
– can get rid of almost all padding!

DOS Header (64 bytes)
‘MZ’

DOS Stub

PE Header (120 bytes)

‘PE’

Data Dictionaries
(typically 128 bytes)

NumOfSections

e_lfanew

intro code and data

SizeOfOptHdr

FileAlignment

EntryPoint

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 25 / 32

Collapsing Headers
● Windows mostly ignores the DOS header

and stub
– ‘MZ’ signature and PE offset are required,

everything else is ignored
● trivial to remove the DOS stub
● possible to “collapse” the DOS header

by moving the PE header inside it
– e_lfanew (PE header offset) will then alias to

some other field in the PE header
– best solution: e_lfanew = FileAlignment = 4

● only 2 unused bytes between DOS and PE header

Collapsed Header
(124 bytes)

Data Dictionaries
(typically 128 bytes)

NumOfSections

intro code and data

SizeOfOptHdr

e_lfanew/FileAlignment

EntryPoint‘MZ’ ‘PE’

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 26 / 32

Ignored Fields
● PE header also contains lots of fields

that are ignored by the loader
– TimeDateStamp, LinkerVersion, SymbolTable,

SizeOfData, BaseOfCode, BaseOfData,
OperatingSystemVersion, …

● possible to put useful code and data
directly into the header!
– only short snippets, but enough to be useful
– entry point can even be inside the header

Collapsed Header
(124 bytes)

Data Dictionaries
(typically 128 bytes)

NumOfSections

more code and data

SizeOfOptHdr

e_lfanew/FileAlignment

‘MZ’ ‘PE’
code

code code

data EntryPoint

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 27 / 32

DLL Imports
● all useful programs require functions from other DLLs

– data dictionaries contain offsets and sizes of various tables
– import table structures describes which DLLs and

functions are required by the program
– all DLL and function names are stored as text

Collapsed Header
(124 bytes)

NumOfSections

more code and data

SizeOfOptHdr

e_lfanew/FileAlignment

‘MZ’ ‘PE’
code

code code

data EntryPoint

… more entries for
other DLLs …

(20 bytes each)

import table
entry (20 bytes)IAT offset Data Dictionaries

(typically
128 bytes)

Exports

Imports

Resources

+ 13
others

terminator entry
(20 bytes of zeroes)

‘user32.dll’

‘PeekMessage’

‘ShowCursor’

IAT entry (4b)

Import Address
Table (“IAT”)

IAT entry (4b)

‘GetAsyncKeyState’

IAT entry (4b)

… more …
terminator

DLL name

IAT entries point to
function names,
replaced by entry points by the loader

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 28 / 32

DLL Import Example

kernel32.dll
ExitProcess
CreateThread

user32.dll
CreateWindowExA
GetDC
ShowCursor
PeekMessage
GetAsyncKeyState
ChangeDisplaySettingsA

gdi32.dll
SwapBuffers
ChoosePixelFormat
SetPixelFormat

opengl32.dll
wglCreateContext
glRects
wglGetProcAddress

winmm.dll
waveOutOpen
waveOutPrepareHeader
waveOutWrite
waveOutGetPosition + glCreateShaderProgramEXT

+ glUseProgram
+ glUniform4f
(but these must be loaded
at runtime with
wglGetProcAddress)

required DLL imports of a typical shader-based OpenGL 4k intro:

18 functions in 5 DLLs:
120 bytes of import tables
92 bytes of IATs
57 bytes of DLL name strings

281 bytes of function name strings
550 bytes total
… and these are part of the EXE header structures, can’t be compressed!

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 29 / 32

Custom Importers
● the normal EXE import table structures are too large for intros

– also, it doesn’t even work for sectionless EXEs on Windows 8+!
● it’s possible to do all this importing manually in code

– when a DLL’s base address in memory is known,
we can parse the export table and look up the desired functions

– LoadLibrary (from kernel32.dll) loads a DLL and returns its base address
– kernel32.dll is loaded into every process,

and its base address can be detected:
● custom importer and its data

can be part of the compressed code
● can also get rid of the Data Dictionaries in the PE header

mov ebx, [fs:0x30] ; get PEB pointer from TEB
mov ebx, [ebx+0x0C] ; get PEB_LDR_DATA pointer from PEB
mov ebx, [ebx+0x14] ; go to first LDR_DATA_TABLE_ENTRY
mov ebx, [ebx] ; go to ntdll.dll's LDR_DATA_TABLE_ENTRY
mov ebx, [ebx] ; go to kernel32.dll's LDR_DATA_TABLE_ENTRY
mov ebx, [ebx+0x10] ; et voilà, kernel32.dll’s base address!

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 30 / 32

Import By Hash
● the function names are still quite large, even when compressed
● only used to search for functions in some DLL’s export table
● but if there’s already a custom importer …

– no strict need to match function names with normal string comparison
– can do anything to uniquely identify each function

● don’t store function names themselves, but a hash of the name
– nothing fancy, just enough to tell function names in Windows DLLs apart
– e.g. 32-bit xor-and-rotate hash:

● from 14 bytes* per function down to 4!
* (on average, uncompressed)

foreach (char c in functionName):
hash = hash ^ c
hash = (hash << 7) | (hash >> 25)

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 31 / 32

Minimal EXE
● combining all the tricks,

only the 124-byte header is left
– plus decompressor and loader,

around 200-300 bytes
– 3,5k of (compressed) space to fill

with awesome stuff! Collapsed Header
(124 bytes)

decompressor and loader

NumOfSections

compressed code and data

SizeOfOptHdr

e_lfanew/FileAlignment

‘MZ’ ‘PE’
code

code code

data EntryPoint

KeyJ^TRBL: All The Small Things — Tricks and Techniques used in Intros • Deadline 2017 32 / 32

So that’s it!
● This concludes our overview of intro tricks and techniques.

● Thanks for your attention!

● Any questions?

● Get the slides at: https://keyj.emphy.de/intro-tricks/

https://keyj.emphy.de/intro-tricks/

