
LINE0$Gallium3D XCB GEM DDX fg
lrx$LINE0

LINE1$KAA X11 nouveau Xv lib
hybris$LINE1

LINE3$GLX UXA XWayland X.Org$LINE3

LINE5$OpenGL ra
deonhd Lima$LINE5

LINE7$Xlib PRIME Xgl G
rate$LINE7

LINE9$XvBA SurfaceFlinger$LINE9

LINE11$EGL XvMC W
eston$LINE11

LINE2$XAA Mesa DRM flink XMir$LINE2

LINE4$Mir W
ayland Glamor E

tna_viv$LINE4

LINE6$SNA KMS DMA-Buf V
DPAU$LINE6

LINE8$DRI fb
dev OpenMAX$LINE8

LINE10$AIGLX TTM GLSL$LINE10

LINE12$VA-API B
eignet$LINE12

KMS UXA DRM OMG WTF BBQ?
Linux Graphics Demystified

Martin Fiedler
Dream Chip Technologies GmbH

Chemnitzer Linux-Tage 2014

Durchblick im Linux-Grafikdschungel

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Agenda
◾ Console and Frame Buffer
◾ X Window System
◾ OpenGL, Mesa and Gallium3D
◾ DRI – Direct Rendering Infrastructure
◾ KMS – Kernel Mode Setting
◾ Compositing
◾ Driver Overview
◾ Other Graphics Systems – Android, Wayland and Mir
◾ Video Acceleration
◾ Hybrid Graphics

Martin Fiedler • Durchblick im Linux-Grafikdschungel 2/49

Console and Frame Buffer

A long, long time ago ...
When Linux was first made:
◾ Linux console used VGA hardware directly
▸ ... in text mode, of course ☺

◾ first graphical applications brought their own drivers
◾ first graphics libraries appeared, e.g. SVGALib
◾ applications are responsible for sustaining the graphics hardware state
▸ at start: graphics hardware state is saved
▸ at exit: graphics hardware state is restored
▸ still valid for the X Server today

Martin Fiedler • Durchblick im Linux-Grafikdschungel 4/49

Hardware

Framebuffer
Driver

/dev/fb0

fbcon
Graphical

Application

Linux Console
Subsystem

/dev/tty1

Console
Application

Framebuffer Devices
First in-kernel graphics framework: Framebuffer Devices (»fbdev«)
◾ required for porting:

many platforms don’t have a text mode
◾ hardware-specific kernel drivers

with common API
▸ z.B. intelfb, atifb
▸ vesafb: hardware independent,

uses the VESA BIOS of the graphics card
▸ efifb: same, but for UEFI

◾ accessible from userspace: /dev/fbX
◾ very simple API
◾ fbcon: text console emulation

with bitmapped fonts (and penguins ☺)
▸ done in the kernel, not userspace

Martin Fiedler • Durchblick im Linux-Grafikdschungel 5/49

X Window System

X1
1 P

ro
to

co
l

X1
1 P

ro
to

co
l

X Server

Application
(X Client)

Display
Devices

Application
(X Client)

DriverDriver

Input
Devices

X Window System
Most commonly used graphics system on Linux: The X Window System (»X11«, »X«)
◾ popular on all Unix-like systems
◾ client/server architecture
▸ client = application
▸ server manages input and output

◾ network transparent: client and server
not required to run on the same machine
▸ communication via TCP/IP
▸ or locally via Unix Domain Sockets

◾ X11 is the name of the protocol
◾ X Server manages a window hierarchy
▸ root window = desktop wallpaper
▸ top-level windows = application windows
▸ subwindows = controls (buttons etc.)

Martin Fiedler • Durchblick im Linux-Grafikdschungel 7/49

X Clients and Servers
◾ X Clients don’t implement the X11 protocol directly, but use libraries:
▸ traditionally Xlib
▸ newer, leaner alternative: XCB (»X11 C Bindings«)
▸ toolkits (Motif, Gtk, Qt, ...) internally use Xlib or XCB, too

◾Window Manager: special X Client that manages the positions of the top-level
windows and draws window frames (»decorations«)

◾ X Server manages input (keyboard, mouse, ...) and output (graphics only)
▸ generic part: DIX (»Device Independent X«)
▸ hardware-specific part: DDX (»Device Dependent X«)
◦ contains drivers for input and output devices

◾most popular X Server implementation: XFree86, today X.Org
▸ DDX part is modular: drivers are stand-alone modules
▸ DDX interface may change with each version of the server

Martin Fiedler • Durchblick im Linux-Grafikdschungel 8/49

X Extensions
The X Protocol can be extended with new functionality via Extensions. Examples:
◾ XSHM (»X Shared Memory«) – faster local display of bitmap graphics
◾ Xv (»X Video«) – hardware-accelerated video display
◾ GLX – OpenGL on X
◾ Xinerama – multi-monitor support
◾ XRandR (»X Resize and Rotate«) – graphics mode setting without restarting the X

Server
◾ XRender – modern anti-aliased, alpha-blended 2D graphics
▸ today used for (almost) every 2D graphics application

Martin Fiedler • Durchblick im Linux-Grafikdschungel 9/49

2D Acceleration in X
Multiple approaches to hardware-accelerated 2D graphics in XFree86 / X.Org:
◾ XAA (»XFree86 Acceleration Architecture«, 1996)
▸ simple acceleration of line drawing and fill operations

◾ EXA (2005) – derived from KAA (»Kdrive Acceleration Architecture«, 2004)
▸ dedicated to XRender acceleration

◾ UXA (»Unified Memory Acceleration Architecture«, 2008)
▸ developed by Intel, designated successor to EXA
▸ not adopted by non-Intel drivers

◾ SNA (»Sandy Bridge New Acceleration«, 2011)
▸ very Intel specific, but also quite fast

◾ Glamor (2011)
▸ implements all 2D acceleration via OpenGL
▸ result: hardware independent

Martin Fiedler • Durchblick im Linux-Grafikdschungel 10/49

OpenGL

OpenGL
OpenGL (»Open Graphics Language«) is the standard API for 3D graphics.
◾ industry standard, governed by the »Khronos Group« consortium
◾ functionality: hardware-accelerated drawing of textured triangles
◾ OpenGL ES = »OpenGL for Embedded Systems«
▸ (mostly) a subset of OpenGL, ~90% compatible

◾ OpenGL (ES) 2.0 and newer feature programmable shaders
▸ C-like language GLSL (»OpenGL Shading Language«)

◾ extension mechanism (similar to X11)
◾ additional API required as »glue« to the windowing system:
▸ GLX for the X Window System
▸WGL (Windows), AGL (Mac OS X)
▸ EGL for OpenGL ES (Embedded Linux, Android, iOS, ...)
◦ available on all systems, will eventually supersede GLX etc.

Martin Fiedler • Durchblick im Linux-Grafikdschungel 12/49

X Server

Application

OpenGL

Application OpenGL

X11 + GLX

direct

X Server

X11 + GLX
function

calls
GLX

Indirect vs. Direct Rendering
What does OpenGL on Linux with X.Org
look like in practice?
◾ GLX = part of the X protocol
◾ Indirect Rendering
▸ OpenGL commands are transferred

via the GLX protocol
▸ some time ago, this didn’t allow

for hardware acceleration
◾ Direct Rendering
▸ local only (not networked)
▸ client liks against libGL.so

and uses that directly
▸ libGL.so contains a (possibly

hardware-specific) OpenGL implementation
Martin Fiedler • Durchblick im Linux-Grafikdschungel 13/49

Mesa
There are two kinds of OpenGL implementations on Linux:
◾ the proprietary drivers by nVidia and AMD
◾ or Mesa
Mesa is an open source OpenGL implementation
◾ ... including GLX, EGL and OpenGL ES
◾ initially only software-rendered
◾ today it’s the bases for all open source 3D drivers

Martin Fiedler • Durchblick im Linux-Grafikdschungel 14/49

Gallium3D
Gallium3D is a framework for implementing GPU drivers in an operating system
independent manner.
◾ partially dependent on Mesa
◾ not just 3D graphics – also does GPU compute and hardware video decoding
◾ three basic parts:
▸ State Tracker: implementation of a client API
◦ e.g. OpenGL (via Mesa), OpenCL for compute, VDPAU and OpenMAX for video

▸WinSys Driver: implementation of the GLX or EGL layer
▸ Pipe Driver: backend for a specific GPU
◦ e.g. llvmpipe (a comparatively fast software renderer)
◦ nv30, nv50, nvc0, nve0 (nVidia GPUs); r300, r600, radeonsi (AMD GPUs)

◾ uses shader representation TGSI (»Tungsten Graphics Shader Infrastructure«)
▸ some backends also use LLVM internally

Martin Fiedler • Durchblick im Linux-Grafikdschungel 15/49

GPU

Mesa

Application

GPU

Pi
pe

 D
riv

er

OpenGL

Gallium3D
State Tracker

Gallium3D
(TGSI)

»gallivm«
LLVM IR

Mesa

Application

OpenGL

Gallium3D
State Tracker

Gallium3D
(TGSI)

GPUGPU

Gallium3D
Pipe Driver

Mesa

Application

OpenGL

hardware-
specific
driver

backend

Application

OpenGL

proprietary
OpenGL
driver

LLVM
Backend

OpenGL Driver Stacks
In total, there are four possible
driver stacks for OpenGL:
◾ proprietary driver
▸ replaces libGL.so

◾ »Mesa Classic«
▸ generic libGL.so
▸ hardware-specific

backend in Mesa
◾Mesa + Gallium3D
▸Mesa as State Tracker
▸ Gallium3D backend (TGSI)

◾Mesa + Gallium3D + LLVM
▸Mesa as State Tracker
▸ Gallium3D backend (LLVM)

Martin Fiedler • Durchblick im Linux-Grafikdschungel 16/49

OpenCL
◾ Current GPUs are not just good for graphics
▸ contain dozens to thousands of fast floating point compute units
▸ GPGPU (»General Purpose GPU«) or Compute applications

◾ Standard API for compute: OpenCL (»Open Compute Language«)
▸ also governed by Khronos Group
▸ Linux support works in a similar way to OpenGL:
◦ closed source drivers bring their own implementation
◦ Gallium3D: state tracker »Clover«
◦ Beignet for Intel GPUs

◾ other popular compute API: CUDA
▸ proprietary, nVidia only, only available in closed source drivers

Martin Fiedler • Durchblick im Linux-Grafikdschungel 17/49

Direct Rendering Infrastructure

DRI & DRM
◾ OpenGL driver runs in userspace as part of the application process
◾ access to the graphics hardware is governed by a kernel driver
▸ also manages concurrent access from multiple parallel processes

◾ proprietary graphics drivers have their own proprietary kernel driver APIs
◾ for open source drivers, there’s a common framework:

the Direct Rendering Infrastructure (DRI)
◾multiple layers:
▸ hardware-independent userspace library (libdrm.so)
▸ hardware- and driver-dependent userspace library (e.g. libdrm_intel.so)
▸ the kernel module itself: the Direct Rendering Manager (DRM)

◾ DRM exports device nodes /dev/dri/cardX
▸ but: interface between libdrm_XXX.so and DRM is partially driver-dependent

Martin Fiedler • Durchblick im Linux-Grafikdschungel 19/49

DRI Versions
There are three major generations of the DRI:
◾ DRI 1 (1998)
▸ first, limited implementation
▸ rather inefficient if more than one application wanted to use the 3D hardware

◾ DRI 2 (2007)
▸ solves the most serious problems of DRI 1
▸ the current, most widely deployed version

◾ DRI 3 (2014?)
▸many detail improvements
▸ currently in development

If not mentioned otherwise, the following slides refer to DRI 2.

Martin Fiedler • Durchblick im Linux-Grafikdschungel 20/49

DRM Master and Render Nodes
DRM clients are not equal – there is a »DRM Master«
◾ typically the X Server
◾ runs as root
◾manages the GPU alone
▸ there’s always just one DRM Master per GPU

◾ can authorize other processes to use the GPU
◾ Problem: can’t use the GPU without an X Server
▸ annoying for compute applications

◾ Solution: Render Nodes in DRI 3
▸ /dev/dri/renderDXX
▸ limited functionality – no graphics output
▸ no authorization by the DRM Master required

Martin Fiedler • Durchblick im Linux-Grafikdschungel 21/49

Memory Management and Buffer Sharing
A major task of the DRI is managing graphics memory.
◾ Intel drivers use GEM (»Graphics Execution Manager«) for this
◾most other drivers use the GEM API, but a different implementation beneath:

TTM (»Translation Table Manager«)
◾most important feature: passing and sharing graphics buffers across process

boundaries
▸ essential for compositing (»3D desktops« like Compiz)

◾ with GEM: flink API
▸ global numerical IDs for shared buffers
▸ security issue: IDs are easily guessable

◾ newer, more secure sharing API since Linux 3.3: DMA-Buf
▸ buffers are identified by file descriptors
▸ file descriptors can be transferred in a secure way via Unix Domain Sockets

Martin Fiedler • Durchblick im Linux-Grafikdschungel 22/49

Kernel Mode Setting

Issues with User Mode Setting
Classic graphics mode setting (»User Mode-Setting«) is problematic:
◾ hardware is being initialized multiple times
▸ first by the BIOS for its boot messages ...
▸ ... then by the framebuffer driver for the boot console ...
▸ ... and finally by the X Server

◾ flickers during boot
◾ flickers when changing between virtual consoles and X Server instances
◾ duplicated driver code
▸ framebuffer driver and DDX mostly do the same things

◾ issues with suspend and resume
◾ VESA framebuffer driver can’t reliably detect the display resolution
▸ uses some arbitrary default resolution
▸ result: boot messages look blurry ☹

Martin Fiedler • Durchblick im Linux-Grafikdschungel 24/49

LVDS
Encoder

CRTC

Frame Buffer Plane(s)

Encoder

Connector

internal display

HDMI

Connector

HDMI port

(Example)

Kernel Mode Setting
Solution: Kernel Mode Setting (KMS)
◾ a single driver in the kernel,

used by the framebuffer and the X Server
◾ subsystem of the DRI
▸ no new device nodes

◾ flexible display concepts, leverages the
possibilities of modern display controllers:
▸ Frame Buffer
▸ Plane = overlay
▸ CRTC = display controller
▸ Encoder, e.g. HDMI transmitter
▸ Connector = physical port or display

◾ Frame Buffers and Planes are DRI buffers

Martin Fiedler • Durchblick im Linux-Grafikdschungel 25/49

KMS: Outlook
◾ xf86-video-modesetting: hardware-independent DDX driver for X.Org, based on

KMS and Glamor

◾ KMSCON: replacement of the Linux kernel’s framebuffer console layer with a
proper, fully featured terminal emulation in userspace
▸ hardware acceleration, multiple monitors, full Unicode support, anti-aliasing, ...

◾ Further development of KMS: ADF (»Atomic Display Framework«)
▸ useful for hardware with multiple overlay planes
◦ standard feature on embedded and mobile devices

▸ settings of all overlays can be modified synchronously (»atomically«)
◦ prevents flickering and tearing

Martin Fiedler • Durchblick im Linux-Grafikdschungel 26/49

Compositing

Compositor

Offscreen
Pixmaps

Compositing
◾ normal X11 windows are »lossy«
▸ have to be redrawn if areas that have been

occluded by other windows are exposed
◾ alternative: redirection
▸ window isn’t drawn directly to the screen,

but »off-screen« into a so-called pixmap
▸ input handling continues to work as usual

(i.e. as if the window was drawn on-screen)
◾ compositor finally draws the off-screen pixmaps

at the correct locations
▸ only one »real« window without redirection:

the Compositor Root Window
◾ compositor commonly integrated into the window manager
◾ unredirection = suspension of redirection for full-screen windows

Martin Fiedler • Durchblick im Linux-Grafikdschungel 28/49

X Server

Application Compositor

Display

OpenGLflink /
DMA-BufOpenGL Off-

screen

Compositing and OpenGL
Compositing is particularly interesting in combination with OpenGL for »3D
desktops« like Compiz.
◾ but: OpenGL »doesn’t know« X11 pixmaps, just its own textures and framebuffers
◾ Problem 1: compositor has to access pixmaps as OpenGL textures for drawing
▸ Solution: extension GLX_EXT_texture_from_pixmap

◾ Problem 2: compositor requires access to framebuffers of other processes’ OpenGL
contexts
▸ today, that’s easy to do

with DRI buffer sharing
◦ every OpenGL framebuffer is a

DRI buffer
◦ compositor uses these DRI buffers

as OpenGL textures

Martin Fiedler • Durchblick im Linux-Grafikdschungel 29/49

Xgl

X Server Display

OpenGL

Compositor

Off-
screenOpenGL

Application

Xgl
Early solution attempt for the OpenGL compositing problem: Xgl
◾ Xgl = special »virtual« X Server
◾ draws everything with OpenGL
▸ for classic X applications: using the

glitz library (a predecessor of Glamor)
▸ for OpenGL applications: by enforcing

indirect rendering
◦ all OpenGL commands go

through the Xgl server
◦ ... who redirects the output into

OpenGL Frame Buffer Objects
▸ this way, the server can give the compositor

access to all windows’ contents
◾ Xgl itself runs on another, »real« X Server

Martin Fiedler • Durchblick im Linux-Grafikdschungel 30/49

Display

Compositor

OpenGLOff-
screenOpenGL

Application

AIGLX
Other early approach to the OpenGL compositing problem: AIGLX
(»Accelerated Indirect GLX«)
◾ enables hardware accelerated

indirect rendering for OpenGL
◾ actually, it enforces indirect rendering:
▸ all real OpenGL rendering

happens in the X Server
▸ output is redirected into

OpenGL Frame Buffer Objects
◾ this way, the server can give the compositor

access to all windows’ contents

Martin Fiedler • Durchblick im Linux-Grafikdschungel 31/49

Driver Overview

Drivers for PC Graphics Hardware
◾ Drivers for DRI, X.Org (DDX), Mesa and Gallium3D often have different names
◾ »mix-and-match« possible in some cases
◾ for unsupported hardware
▸ using the VESA BIOS or UEFI firmware for mode setting
▸ software-rendered OpenGL
◦ earlier: Mesa’s software renderer – extremely slow
◦ today: Gallium3D llvmpipe – generates machine code, considerably faster

◾ Intel integrated graphics
▸ excellent driver support, exclusively open source
▸ old-fashioned – no Gallium3D
◦ experimental Gallium3D pipe driver »ILO«
◦ official drivers are »Classic Mesa«

Martin Fiedler • Durchblick im Linux-Grafikdschungel 33/49

Drivers for PC Graphics Hardware
◾ ATI / AMD GPUs (integrated or dedicated)
▸ proprietary closed source driver: fglrx
▸ AMD publicly documents their hardware → good open source driver support
▸ radeon driver family: Mesa for Radeon 7000 – 9250, Gallium3D from Radeon 9500
▸ radeonhd driver family: Mesa for Radeon X1000 – HD4000, not developed further

◾ nVidia GPUs
▸ proprietary closed source driver: nvidia
▸ no hardware documentation → open source drivers rely on reverse engineering
▸ nv driver: very old open source 2D driver for Riva 128 and older GeForces
▸ nouveau driver family: Gallium3D, from GeForce FX upwards
▸ nouveau_vieux driver family: Mesa, Riva TNT to GeForce 4

Martin Fiedler • Durchblick im Linux-Grafikdschungel 34/49

Typical Driver Stacks on the PC

Driver Fallback Intel AMD nVidia

Framebuffer vesafb /
efifb KMS vesafb KMS vesafb KMS

DRM/Kernel — i915 fglrx radeon nvidia nouveau
X.Org DDX fbdev / vesa intel fglrx radeon nvidia nouveau

2D Accel. — UXA /
SNA

propri-
etary

EXA /
Glamor

propri-
etary EXA

OpenGL Mesa Mesa fglrx Mesa nVidia Mesa

Mesa Gallium3D i915 /
i965 — Gallium3D — Gallium3D

Gallium3D llvmpipe — — r300 / r600 /
radeonsi — nv30 / nv50 /

nvc0 / nve0
OpenCL Gallium3D Beignet fglrx Gallium3D nVidia Gallium3D

Martin Fiedler • Durchblick im Linux-Grafikdschungel 35/49

Drivers for Embedded GPUs
The driver situation for GPUs in smartphones, tablets etc. is much more complicated.
◾ GPU-, SoC- and device manufacturers deliver closed source drivers only
▸ usually appalling quality, lots of bugs
▸ sometimes not even the kernel drivers are available as source code
▸ sometimes even distribution of the binary blob is forbidden

◾ exception: Broadcom VideoCore IV (e.g. Raspberry Pi)
▸ documentation and driver source code published in February 2014

Several approaches to develop open source drivers via reverse engineering:
◾ Qualcomm Adreno – Freedreno
◾ ARM Mali – Lima
◾ Vivante – Etna_viv
◾ nVidia Tegra – Grate
◾ Imagination Technologies PowerVR – ???

Martin Fiedler • Durchblick im Linux-Grafikdschungel 36/49

Other Graphics Systems

What else is out there?
Until now, we’ve been talking about the X Window System only,
but there are other graphics systems.
◾ the basic concepts are always similar, though
◾ Example: DirectFB
▸ developed for embedded systems (set top boxes) in 1997
◦ goal: graphics system with lower resource footprint than X

▸ based on Linux’ framebuffer devices
◦ additional hardware drivers for acceleration

▸ central library: libdirectfb
◦ manages graphics and sound output as well as input

▸ own window manager, ports of common toolkits, X compatibility (using a special
X Server), ...

▸ nevertheless: not relevant for normal »desktop« systems

Martin Fiedler • Durchblick im Linux-Grafikdschungel 38/49

Hardware (GPU + Display Controller)

Binder IPC

OpenGL ES EGL gralloc HWComposer

Android UI
Framework

Application

SurfaceFlinger

Android
◾ Android uses the Linux kernel, but not much more
▸ no GNU userland, no X
▸ custom C library: Bionic
▸ custom IPC mechanism: Binder

◾ graphics based on OpenGL ES and EGL
▸ no DRI (mostly proprietary drivers)

◾ hardware-specific HWComposer
library as rough equivalent of KMS

◾ gralloc for graphics memory management
▸ part of HWComposer in newer versions

◾ compositor and display server: SurfaceFlinger
◾ SurfaceFlinger also allocates graphics buffers for applications

Martin Fiedler • Durchblick im Linux-Grafikdschungel 39/49

evdev

Graphics HW

Wayland
Protocol

DRI: OpenGL + EGL

Application Compositor /
Display Server

Input Devices

Wayland
So far the most promising candidate for replacing the X Window System: Wayland
◾ goal: radical simplification of X’s concepts
◾ technically, it’s a protocol
▸ using Unix Domain Sockets
▸ not network transparent

◾ server part is not a program of its own,
but a library
▸ used by the compositor

→ the compositor is the display server
▸ reference implementation: Weston

◾ based on EGL and DRI
◾ buffer allocation and drawing completely

done in the clients
◾ input devices are used via the kernel’s event device framework

Martin Fiedler • Durchblick im Linux-Grafikdschungel 40/49

XWayland und Hybris
How can X applications be run on a Wayland system?
◾ XWayland = modified »rootless« X.Org Server

that turns all top-level X windows into Wayland clients
◾ still requires hardware-specific DDX drivers, exceptions:
▸ xf86-video-wlshm (hardware-independent, but not accelerated)
▸ xf86-video-wlglamor (with 2D acceleration via Glamor)

Wayland can work on Android graphics drivers using libhybris:
◾ libhybris »mediates« between the GNU libc world and the Bionic world
▸ libc applications can use Bionic libraries
▸ in particular, they can use libGLESv2.so, the OpenGL ES driver

◾ also adapts some other Android peculiarities (e.g. gralloc, EGL differences)

Martin Fiedler • Durchblick im Linux-Grafikdschungel 41/49

Mir
Competition for Wayland: Mir by Canonical
◾ graphics system for upcoming Ubuntu versions
▸ not yet in 14.04, but maybe in 14.10

◾ conceptually very closely related to Wayland,
but a totally different and incompatible implementation

◾ uses more parts of Android, e.g. the input subsystem
◾more focus on data exchange between applications
◾ graphics buffers are allocated in the server, but drawn in the client
◾ XMir = XWayland for Mir
◾ also employs libhybris for Android graphics driver support
◾much resistance in the community
▸ it’s doubtfull whether another system is really necessary

Martin Fiedler • Durchblick im Linux-Grafikdschungel 42/49

Video Acceleration

Video Acceleration
There are multiple approaches for hardware-accelerated video on X:
◾ Xv (X extension, 1991)
▸ only for video output, not decoding
▸ functionality: scaling, color space conversion
▸ two typical kinds of implementation (can be mixed):
◦ Overlay: directly overlays the video into the display output
◦ Textured Video: draws the video into the framebuffer using the 3D hardware

◾ XvMC (X extension, 2000)
▸ accelerates two specific aspects of MPEG-2 decoding:

Motion Compensation (»MC«) and IDCT (8×8 block transform)
▸ obsolete
◦ specific to MPEG-2, never adapted to newer standards
◦ supported by very few drivers only

Martin Fiedler • Durchblick im Linux-Grafikdschungel 44/49

AMD
Closed Source

nVidia
Closed Source

AMD
Open Source

nVidia
Open Source

Intel
Open Source

Gallium3DOpenMAX

VDPAU

XvBA

VA-API

Hardware Decoding
Current GPUs contain hardware decoders for the common standards (e.g. H.264).
◾multiple incompatible APIs:
▸ nVidia proprietary: VDPAU (»Video Decode and Presentation API for Unix«)
◦ full-featured: decoding, display, deinterlacing, ...

▸ AMD proprietary: XvBA (»Xv Bitstream Acceleration«)
◦ decoding only, display via OpenGL

▸ Intel: VA-API (»Video Acceleration API«)
◦ decoding into DRI buffers

▸ embedded playforms: OpenMAX
◦ industry standard for de- and encoding

◾ Situation improves slowly:
▸ VA-API backends for VDPAU and XvBA
▸ Gallium3D State Tracker for VDPAU and OpenMAX
▸ Gallium3D backends for nVidia’s und AMD’s hardware decoders

Martin Fiedler • Durchblick im Linux-Grafikdschungel 45/49

Hybrid Graphics

Hybrid Graphics
◾Many current notebooks have two GPUs:
▸ processor-integrated graphics – slow, but saves power
▸ additional (»dedicated«) nVidia or AMD GPU – fast, but inefficient

◾ vga_switcheroo: deactivates one of the GPUs
▸ switching GPUs requires restarting the X Server
▸ only works on systems with »Video Mux«

where both GPUs can drive all displays
▸ Problem: newer models are usually »muxless«

◾ by now, proprietary drivers by AMD and nVidia have their own switchers
▸ based on XRandR 1.4 (xrandr --setprovideroutputsource)
▸ work on »muxless« systems too
▸ but: the dedicated GPU’s output is copied over to the integrated GPU
◦ not saving power (quite the contrary – both GPUs are active!)

Martin Fiedler • Durchblick im Linux-Grafikdschungel 47/49

Bumblebee and PRIME
For nVidia-based hybrid systems (»Optimus«) with the proprietery driver, there is a
»real« hybrid graphics solution: Bumblebee
◾ initially, only the integrated GPU runs
◾ if an application is run using a special wrapper (optirun):
▸ the dedicated GPU is activated
▸ a second (invisible) X Server running on the nVidia driver is started
▸ all OpenGL drawing commands are redirected to that second X Server via primus
▸ after every frame, the final image is copied back to the integrated GPU’s X Server

open source solution: PRIME
◾ currently in development
◾ extends the DMA-Buf APIs for cross-GPU buffer sharing
◾ fully dynamic »offloading« of rendering operations
◾ activated with xrandr --setprovideroffloadsink

Martin Fiedler • Durchblick im Linux-Grafikdschungel 48/49

Thank You!

	Durchblick im Linux-Grafikdschungel
	Agenda
	Console and Frame Buffer
	A long, long time ago ...
	Framebuffer Devices

	X Window System
	X Window System
	X Clients and Servers
	X Extensions
	2D Acceleration in X

	OpenGL
	OpenGL
	Indirect vs. Direct Rendering
	Mesa
	Gallium3D
	OpenGL Driver Stacks
	OpenCL

	Direct Rendering Infrastructure
	DRI & DRM
	DRI Versions
	DRM Master and Render Nodes
	Memory Management and Buffer Sharing

	Kernel Mode Setting
	Issues with User Mode Setting
	Kernel Mode Setting
	KMS: Outlook

	Compositing
	Compositing
	Compositing and OpenGL
	Xgl
	AIGLX

	Driver Overview
	Drivers for PC Graphics Hardware
	Drivers for PC Graphics Hardware
	Typical Driver Stacks on the PC
	Drivers for Embedded GPUs

	Other Graphics Systems
	What else is out there?
	Android
	Wayland
	XWayland und Hybris
	Mir

	Video Acceleration
	Video Acceleration
	Hardware Decoding

	Hybrid Graphics
	Hybrid Graphics
	Bumblebee and PRIME

	Thank You!

