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Agenda
◾ Console and Frame Buffer
◾ X Window System
◾ OpenGL, Mesa and Gallium3D
◾ DRI – Direct Rendering Infrastructure
◾ KMS – Kernel Mode Setting
◾ Compositing
◾ Driver Overview
◾ Other Graphics Systems – Android, Wayland and Mir
◾ Video Acceleration
◾ Hybrid Graphics
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Console and Frame Buffer



A long, long time ago ...
When Linux was first made:
◾ Linux console used VGA hardware directly
▸ ... in text mode, of course ☺

◾ first graphical applications brought their own drivers
◾ first graphics libraries appeared, e.g. SVGALib
◾ applications are responsible for sustaining the graphics hardware state
▸ at start: graphics hardware state is saved
▸ at exit: graphics hardware state is restored
▸ still valid for the X Server today
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Framebuffer Devices
First in-kernel graphics framework: Framebuffer Devices (»fbdev«)
◾ required for porting:

many platforms don’t have a text mode
◾ hardware-specific kernel drivers

with common API
▸ z.B. intelfb, atifb
▸ vesafb: hardware independent,

uses the VESA BIOS of the graphics card
▸ efifb: same, but for UEFI

◾ accessible from userspace: /dev/fbX
◾ very simple API
◾ fbcon: text console emulation

with bitmapped fonts (and penguins ☺)
▸ done in the kernel, not userspace
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X Window System
Most commonly used graphics system on Linux: The X Window System (»X11«, »X«)
◾ popular on all Unix-like systems
◾ client/server architecture
▸ client = application
▸ server manages input and output

◾ network transparent: client and server
not required to run on the same machine
▸ communication via TCP/IP
▸ or locally via Unix Domain Sockets

◾ X11 is the name of the protocol
◾ X Server manages a window hierarchy
▸ root window = desktop wallpaper
▸ top-level windows = application windows
▸ subwindows = controls (buttons etc.)
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X Clients and Servers
◾ X Clients don’t implement the X11 protocol directly, but use libraries:
▸ traditionally Xlib
▸ newer, leaner alternative: XCB (»X11 C Bindings«)
▸ toolkits (Motif, Gtk, Qt, ...) internally use Xlib or XCB, too

◾Window Manager: special X Client that manages the positions of the top-level
windows and draws window frames (»decorations«)

◾ X Server manages input (keyboard, mouse, ...) and output (graphics only)
▸ generic part: DIX (»Device Independent X«)
▸ hardware-specific part: DDX (»Device Dependent X«)
◦ contains drivers for input and output devices

◾most popular X Server implementation: XFree86, today X.Org
▸ DDX part is modular: drivers are stand-alone modules
▸ DDX interface may change with each version of the server
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X Extensions
The X Protocol can be extended with new functionality via Extensions. Examples:
◾ XSHM (»X Shared Memory«) – faster local display of bitmap graphics
◾ Xv (»X Video«) – hardware-accelerated video display
◾ GLX – OpenGL on X
◾ Xinerama – multi-monitor support
◾ XRandR (»X Resize and Rotate«) – graphics mode setting without restarting the X

Server
◾ XRender – modern anti-aliased, alpha-blended 2D graphics
▸ today used for (almost) every 2D graphics application
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2D Acceleration in X
Multiple approaches to hardware-accelerated 2D graphics in XFree86 / X.Org:
◾ XAA (»XFree86 Acceleration Architecture«, 1996)
▸ simple acceleration of line drawing and fill operations

◾ EXA (2005) – derived from KAA (»Kdrive Acceleration Architecture«, 2004)
▸ dedicated to XRender acceleration

◾ UXA (»Unified Memory Acceleration Architecture«, 2008)
▸ developed by Intel, designated successor to EXA
▸ not adopted by non-Intel drivers

◾ SNA (»Sandy Bridge New Acceleration«, 2011)
▸ very Intel specific, but also quite fast

◾ Glamor (2011)
▸ implements all 2D acceleration via OpenGL
▸ result: hardware independent
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OpenGL
OpenGL (»Open Graphics Language«) is the standard API for 3D graphics.
◾ industry standard, governed by the »Khronos Group« consortium
◾ functionality: hardware-accelerated drawing of textured triangles
◾ OpenGL ES = »OpenGL for Embedded Systems«
▸ (mostly) a subset of OpenGL, ~90% compatible

◾ OpenGL (ES) 2.0 and newer feature programmable shaders
▸ C-like language GLSL (»OpenGL Shading Language«)

◾ extension mechanism (similar to X11)
◾ additional API required as »glue« to the windowing system:
▸ GLX for the X Window System
▸WGL (Windows), AGL (Mac OS X)
▸ EGL for OpenGL ES (Embedded Linux, Android, iOS, ...)
◦ available on all systems, will eventually supersede GLX etc.
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Indirect vs. Direct Rendering
What does OpenGL on Linux with X.Org
look like in practice?
◾ GLX = part of the X protocol
◾ Indirect Rendering
▸ OpenGL commands are transferred

via the GLX protocol
▸ some time ago, this didn’t allow

for hardware acceleration
◾ Direct Rendering
▸ local only (not networked)
▸ client liks against libGL.so

and uses that directly
▸ libGL.so contains a (possibly

hardware-specific) OpenGL implementation
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Mesa
There are two kinds of OpenGL implementations on Linux:
◾ the proprietary drivers by nVidia and AMD
◾ or Mesa
Mesa is an open source OpenGL implementation
◾ ... including GLX, EGL and OpenGL ES
◾ initially only software-rendered
◾ today it’s the bases for all open source 3D drivers
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Gallium3D
Gallium3D is a framework for implementing GPU drivers in an operating system
independent manner.
◾ partially dependent on Mesa
◾ not just 3D graphics – also does GPU compute and hardware video decoding
◾ three basic parts:
▸ State Tracker: implementation of a client API
◦ e.g. OpenGL (via Mesa), OpenCL for compute, VDPAU and OpenMAX for video

▸WinSys Driver: implementation of the GLX or EGL layer
▸ Pipe Driver: backend for a specific GPU
◦ e.g. llvmpipe (a comparatively fast software renderer)
◦ nv30, nv50, nvc0, nve0 (nVidia GPUs); r300, r600, radeonsi (AMD GPUs)

◾ uses shader representation TGSI (»Tungsten Graphics Shader Infrastructure«)
▸ some backends also use LLVM internally
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OpenGL Driver Stacks
In total, there are four possible
driver stacks for OpenGL:
◾ proprietary driver
▸ replaces libGL.so

◾ »Mesa Classic«
▸ generic libGL.so
▸ hardware-specific

backend in Mesa
◾Mesa + Gallium3D
▸Mesa as State Tracker
▸ Gallium3D backend (TGSI)

◾Mesa + Gallium3D + LLVM
▸Mesa as State Tracker
▸ Gallium3D backend (LLVM)
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OpenCL
◾ Current GPUs are not just good for graphics
▸ contain dozens to thousands of fast floating point compute units
▸ GPGPU (»General Purpose GPU«) or Compute applications

◾ Standard API for compute: OpenCL (»Open Compute Language«)
▸ also governed by Khronos Group
▸ Linux support works in a similar way to OpenGL:
◦ closed source drivers bring their own implementation
◦ Gallium3D: state tracker »Clover«
◦ Beignet for Intel GPUs

◾ other popular compute API: CUDA
▸ proprietary, nVidia only, only available in closed source drivers
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DRI & DRM
◾ OpenGL driver runs in userspace as part of the application process
◾ access to the graphics hardware is governed by a kernel driver
▸ also manages concurrent access from multiple parallel processes

◾ proprietary graphics drivers have their own proprietary kernel driver APIs
◾ for open source drivers, there’s a common framework:

the Direct Rendering Infrastructure (DRI)
◾multiple layers:
▸ hardware-independent userspace library (libdrm.so)
▸ hardware- and driver-dependent userspace library (e.g. libdrm_intel.so)
▸ the kernel module itself: the Direct Rendering Manager (DRM)

◾ DRM exports device nodes /dev/dri/cardX
▸ but: interface between libdrm_XXX.so and DRM is partially driver-dependent
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DRI Versions
There are three major generations of the DRI:
◾ DRI 1 (1998)
▸ first, limited implementation
▸ rather inefficient if more than one application wanted to use the 3D hardware

◾ DRI 2 (2007)
▸ solves the most serious problems of DRI 1
▸ the current, most widely deployed version

◾ DRI 3 (2014?)
▸many detail improvements
▸ currently in development

If not mentioned otherwise, the following slides refer to DRI 2.
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DRM Master and Render Nodes
DRM clients are not equal – there is a »DRM Master«
◾ typically the X Server
◾ runs as root
◾manages the GPU alone
▸ there’s always just one DRM Master per GPU

◾ can authorize other processes to use the GPU
◾ Problem: can’t use the GPU without an X Server
▸ annoying for compute applications

◾ Solution: Render Nodes in DRI 3
▸ /dev/dri/renderDXX
▸ limited functionality – no graphics output
▸ no authorization by the DRM Master required
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Memory Management and Buffer Sharing
A major task of the DRI is managing graphics memory.
◾ Intel drivers use GEM (»Graphics Execution Manager«) for this
◾most other drivers use the GEM API, but a different implementation beneath:

TTM (»Translation Table Manager«)
◾most important feature: passing and sharing graphics buffers across process

boundaries
▸ essential for compositing (»3D desktops« like Compiz)

◾ with GEM: flink API
▸ global numerical IDs for shared buffers
▸ security issue: IDs are easily guessable

◾ newer, more secure sharing API since Linux 3.3: DMA-Buf
▸ buffers are identified by file descriptors
▸ file descriptors can be transferred in a secure way via Unix Domain Sockets
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Issues with User Mode Setting
Classic graphics mode setting (»User Mode-Setting«) is problematic:
◾ hardware is being initialized multiple times
▸ first by the BIOS for its boot messages ...
▸ ... then by the framebuffer driver for the boot console ...
▸ ... and finally by the X Server

◾ flickers during boot
◾ flickers when changing between virtual consoles and X Server instances
◾ duplicated driver code
▸ framebuffer driver and DDX mostly do the same things

◾ issues with suspend and resume
◾ VESA framebuffer driver can’t reliably detect the display resolution
▸ uses some arbitrary default resolution
▸ result: boot messages look blurry ☹
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Kernel Mode Setting
Solution: Kernel Mode Setting (KMS)
◾ a single driver in the kernel,

used by the framebuffer and the X Server
◾ subsystem of the DRI
▸ no new device nodes

◾ flexible display concepts, leverages the
possibilities of modern display controllers:
▸ Frame Buffer
▸ Plane = overlay
▸ CRTC = display controller
▸ Encoder, e.g. HDMI transmitter
▸ Connector = physical port or display

◾ Frame Buffers and Planes are DRI buffers
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KMS: Outlook
◾ xf86-video-modesetting: hardware-independent DDX driver for X.Org, based on

KMS and Glamor

◾ KMSCON: replacement of the Linux kernel’s framebuffer console layer with a
proper, fully featured terminal emulation in userspace
▸ hardware acceleration, multiple monitors, full Unicode support, anti-aliasing, ...

◾ Further development of KMS: ADF (»Atomic Display Framework«)
▸ useful for hardware with multiple overlay planes
◦ standard feature on embedded and mobile devices

▸ settings of all overlays can be modified synchronously (»atomically«)
◦ prevents flickering and tearing
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Compositing
◾ normal X11 windows are »lossy«
▸ have to be redrawn if areas that have been

occluded by other windows are exposed
◾ alternative: redirection
▸ window isn’t drawn directly to the screen,

but »off-screen« into a so-called pixmap
▸ input handling continues to work as usual

(i.e. as if the window was drawn on-screen)
◾ compositor finally draws the off-screen pixmaps

at the correct locations
▸ only one »real« window without redirection:

the Compositor Root Window
◾ compositor commonly integrated into the window manager
◾ unredirection = suspension of redirection for full-screen windows
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Compositing and OpenGL
Compositing is particularly interesting in combination with OpenGL for »3D
desktops« like Compiz.
◾ but: OpenGL »doesn’t know« X11 pixmaps, just its own textures and framebuffers
◾ Problem 1: compositor has to access pixmaps as OpenGL textures for drawing
▸ Solution: extension GLX_EXT_texture_from_pixmap

◾ Problem 2: compositor requires access to framebuffers of other processes’ OpenGL
contexts
▸ today, that’s easy to do

with DRI buffer sharing
◦ every OpenGL framebuffer is a

DRI buffer
◦ compositor uses these DRI buffers

as OpenGL textures
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Early solution attempt for the OpenGL compositing problem: Xgl
◾ Xgl = special »virtual« X Server
◾ draws everything with OpenGL
▸ for classic X applications: using the

glitz library (a predecessor of Glamor)
▸ for OpenGL applications: by enforcing

indirect rendering
◦ all OpenGL commands go

through the Xgl server
◦ ... who redirects the output into

OpenGL Frame Buffer Objects
▸ this way, the server can give the compositor

access to all windows’ contents
◾ Xgl itself runs on another, »real« X Server
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Other early approach to the OpenGL compositing problem: AIGLX
(»Accelerated Indirect GLX«)
◾ enables hardware accelerated

indirect rendering for OpenGL
◾ actually, it enforces indirect rendering:
▸ all real OpenGL rendering

happens in the X Server
▸ output is redirected into

OpenGL Frame Buffer Objects
◾ this way, the server can give the compositor

access to all windows’ contents
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Drivers for PC Graphics Hardware
◾ Drivers for DRI, X.Org (DDX), Mesa and Gallium3D often have different names
◾ »mix-and-match« possible in some cases
◾ for unsupported hardware
▸ using the VESA BIOS or UEFI firmware for mode setting
▸ software-rendered OpenGL
◦ earlier: Mesa’s software renderer – extremely slow
◦ today: Gallium3D llvmpipe – generates machine code, considerably faster

◾ Intel integrated graphics
▸ excellent driver support, exclusively open source
▸ old-fashioned – no Gallium3D
◦ experimental Gallium3D pipe driver »ILO«
◦ official drivers are »Classic Mesa«
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Drivers for PC Graphics Hardware
◾ ATI / AMD GPUs (integrated or dedicated)
▸ proprietary closed source driver: fglrx
▸ AMD publicly documents their hardware → good open source driver support
▸ radeon driver family: Mesa for Radeon 7000 – 9250, Gallium3D from Radeon 9500
▸ radeonhd driver family: Mesa for Radeon X1000 – HD4000, not developed further

◾ nVidia GPUs
▸ proprietary closed source driver: nvidia
▸ no hardware documentation → open source drivers rely on reverse engineering
▸ nv driver: very old open source 2D driver for Riva 128 and older GeForces
▸ nouveau driver family: Gallium3D, from GeForce FX upwards
▸ nouveau_vieux driver family: Mesa, Riva TNT to GeForce 4
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Typical Driver Stacks on the PC

Driver Fallback Intel AMD nVidia

Framebuffer vesafb /
efifb KMS vesafb KMS vesafb KMS

DRM/Kernel — i915 fglrx radeon nvidia nouveau
X.Org DDX fbdev / vesa intel fglrx radeon nvidia nouveau

2D Accel. — UXA /
SNA

propri-
etary

EXA /
Glamor

propri-
etary EXA

OpenGL Mesa Mesa fglrx Mesa nVidia Mesa

Mesa Gallium3D i915 /
i965 — Gallium3D — Gallium3D

Gallium3D llvmpipe — — r300 / r600 /
radeonsi — nv30 / nv50 /

nvc0 / nve0
OpenCL Gallium3D Beignet fglrx Gallium3D nVidia Gallium3D
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Drivers for Embedded GPUs
The driver situation for GPUs in smartphones, tablets etc. is much more complicated.
◾ GPU-, SoC- and device manufacturers deliver closed source drivers only
▸ usually appalling quality, lots of bugs
▸ sometimes not even the kernel drivers are available as source code
▸ sometimes even distribution of the binary blob is forbidden

◾ exception: Broadcom VideoCore IV (e.g. Raspberry Pi)
▸ documentation and driver source code published in February 2014

Several approaches to develop open source drivers via reverse engineering:
◾ Qualcomm Adreno – Freedreno
◾ ARM Mali – Lima
◾ Vivante – Etna_viv
◾ nVidia Tegra – Grate
◾ Imagination Technologies PowerVR – ???
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Other Graphics Systems



What else is out there?
Until now, we’ve been talking about the X Window System only,
but there are other graphics systems.
◾ the basic concepts are always similar, though
◾ Example: DirectFB
▸ developed for embedded systems (set top boxes) in 1997
◦ goal: graphics system with lower resource footprint than X

▸ based on Linux’ framebuffer devices
◦ additional hardware drivers for acceleration

▸ central library: libdirectfb
◦ manages graphics and sound output as well as input

▸ own window manager, ports of common toolkits, X compatibility (using a special
X Server), ...

▸ nevertheless: not relevant for normal »desktop« systems
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◾ Android uses the Linux kernel, but not much more
▸ no GNU userland, no X
▸ custom C library: Bionic
▸ custom IPC mechanism: Binder

◾ graphics based on OpenGL ES and EGL
▸ no DRI (mostly proprietary drivers)

◾ hardware-specific HWComposer
library as rough equivalent of KMS

◾ gralloc for graphics memory management
▸ part of HWComposer in newer versions

◾ compositor and display server: SurfaceFlinger
◾ SurfaceFlinger also allocates graphics buffers for applications
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Wayland
So far the most promising candidate for replacing the X Window System: Wayland
◾ goal: radical simplification of X’s concepts
◾ technically, it’s a protocol
▸ using Unix Domain Sockets
▸ not network transparent

◾ server part is not a program of its own,
but a library
▸ used by the compositor

→ the compositor is the display server
▸ reference implementation: Weston

◾ based on EGL and DRI
◾ buffer allocation and drawing completely

done in the clients
◾ input devices are used via the kernel’s event device framework
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XWayland und Hybris
How can X applications be run on a Wayland system?
◾ XWayland = modified »rootless« X.Org Server

that turns all top-level X windows into Wayland clients
◾ still requires hardware-specific DDX drivers, exceptions:
▸ xf86-video-wlshm (hardware-independent, but not accelerated)
▸ xf86-video-wlglamor (with 2D acceleration via Glamor)

Wayland can work on Android graphics drivers using libhybris:
◾ libhybris »mediates« between the GNU libc world and the Bionic world
▸ libc applications can use Bionic libraries
▸ in particular, they can use libGLESv2.so, the OpenGL ES driver

◾ also adapts some other Android peculiarities (e.g. gralloc, EGL differences)
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Mir
Competition for Wayland: Mir by Canonical
◾ graphics system for upcoming Ubuntu versions
▸ not yet in 14.04, but maybe in 14.10

◾ conceptually very closely related to Wayland,
but a totally different and incompatible implementation

◾ uses more parts of Android, e.g. the input subsystem
◾more focus on data exchange between applications
◾ graphics buffers are allocated in the server, but drawn in the client
◾ XMir = XWayland for Mir
◾ also employs libhybris for Android graphics driver support
◾much resistance in the community
▸ it’s doubtfull whether another system is really necessary
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Video Acceleration
There are multiple approaches for hardware-accelerated video on X:
◾ Xv (X extension, 1991)
▸ only for video output, not decoding
▸ functionality: scaling, color space conversion
▸ two typical kinds of implementation (can be mixed):
◦ Overlay: directly overlays the video into the display output
◦ Textured Video: draws the video into the framebuffer using the 3D hardware

◾ XvMC (X extension, 2000)
▸ accelerates two specific aspects of MPEG-2 decoding:

Motion Compensation (»MC«) and IDCT (8×8 block transform)
▸ obsolete
◦ specific to MPEG-2, never adapted to newer standards
◦ supported by very few drivers only
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Hardware Decoding
Current GPUs contain hardware decoders for the common standards (e.g. H.264).
◾multiple incompatible APIs:
▸ nVidia proprietary: VDPAU (»Video Decode and Presentation API for Unix«)
◦ full-featured: decoding, display, deinterlacing, ...

▸ AMD proprietary: XvBA (»Xv Bitstream Acceleration«)
◦ decoding only, display via OpenGL

▸ Intel: VA-API (»Video Acceleration API«)
◦ decoding into DRI buffers

▸ embedded playforms: OpenMAX
◦ industry standard for de- and encoding

◾ Situation improves slowly:
▸ VA-API backends for VDPAU and XvBA
▸ Gallium3D State Tracker for VDPAU and OpenMAX
▸ Gallium3D backends for nVidia’s und AMD’s hardware decoders

Martin Fiedler • Durchblick im Linux-Grafikdschungel 45/49



Hybrid Graphics



Hybrid Graphics
◾Many current notebooks have two GPUs:
▸ processor-integrated graphics – slow, but saves power
▸ additional (»dedicated«) nVidia or AMD GPU – fast, but inefficient

◾ vga_switcheroo: deactivates one of the GPUs
▸ switching GPUs requires restarting the X Server
▸ only works on systems with »Video Mux«

where both GPUs can drive all displays
▸ Problem: newer models are usually »muxless«

◾ by now, proprietary drivers by AMD and nVidia have their own switchers
▸ based on XRandR 1.4 (xrandr --setprovideroutputsource)
▸ work on »muxless« systems too
▸ but: the dedicated GPU’s output is copied over to the integrated GPU
◦ not saving power (quite the contrary – both GPUs are active!)
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Bumblebee and PRIME
For nVidia-based hybrid systems (»Optimus«) with the proprietery driver, there is a
»real« hybrid graphics solution: Bumblebee
◾ initially, only the integrated GPU runs
◾ if an application is run using a special wrapper (optirun):
▸ the dedicated GPU is activated
▸ a second (invisible) X Server running on the nVidia driver is started
▸ all OpenGL drawing commands are redirected to that second X Server via primus
▸ after every frame, the final image is copied back to the integrated GPU’s X Server

open source solution: PRIME
◾ currently in development
◾ extends the DMA-Buf APIs for cross-GPU buffer sharing
◾ fully dynamic »offloading« of rendering operations
◾ activated with xrandr --setprovideroffloadsink
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Thank You!
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